
1.  Introduction
Atmospheric sulfur photochemistry is ubiquitous in planetary atmospheres within our solar system, both past and 
present, and is likely active in exoplanetary atmospheres (Atreya et al., 2003; Gao et al., 2017; Hu et al., 2013). 
Sulfur photochemistry is of particular interest to the understanding of Archean Earth (4.0–2.5 billion years ago). 
It is the most likely cause of the observed mass-independent fractionation of sulfur isotopes (S-MIF) in the 
geologic record from the Archean Eon. Mass-independent fractionation of sulfur isotopes (S-MIF) is frequently 
cited as evidence for an anoxic Archean atmosphere (Domagal-Goldman et al., 2008; Farquhar, Bao, et al., 2000; 
Farquhar & Wing, 2003; Izon et al., 2015; Kasting et al., 1989; Ono, 2017; Pavlov & Kasting, 2002; Zerkle 
et al., 2012). The isotopic signature of S-MIF is preserved due to sulfur funneling into at least two different reser-
voirs, generally believed to be H2SO4 and S8 aerosol (Kasting et al., 1989; Pavlov & Kasting, 2002). Geochem-
ical evidence also suggests the Archean atmosphere experienced an intermittent organic haze: organic aerosol 
particles and gases formed via methane photochemistry (Domagal-Goldman et al., 2008; Izon et al., 2015; Zerkle 
et al., 2012). Few studies, however, have explored how the photochemistry of sulfur in the Archean atmosphere 
could directly interact with the organic haze, such as by generating organosulfur compounds (Dewitt et al., 2010), 
which have been hypothesized as potential carriers of S-MIF (Halevy, 2013).

In Earth's modern atmosphere, organic oxidized sulfur (OOS) compounds, such as organosulfates and organosul-
fonates, are a significant reservoir of sulfur, comprising an estimated 5%–30% of the total organic aerosol mass 
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(Chen et al., 2021; Surratt et al., 2008; Tolocka & Turpin, 2012). We previously showed that organic reduced 
sulfur (ORS) compounds, such as thiols and sulfides, formed when trace hydrogen sulfide (H2S) (0.5–5 ppmv) 
was added to methane (CH4)/N2 photochemical haze experiments (Reed et al., 2020). We estimated that organic 
reduced sulfur (ORS) accounted for ∼20% of the total aerosol mass at 5 ppmv hydrogen sulfide (H2S). To our 
knowledge, Dewitt et al. (2010) is the only laboratory study to explore the effects of a sulfur gas on Archean-like 
haze chemistry, that is, with high carbon dioxide (CO2)/methane (CH4) mixing ratios. That work used aerosol 
mass spectrometry (AMS) to explore how sulfur dioxide (SO2) affected the haze chemistry formed from methane 
(CH4) mixtures with and without carbon dioxide (CO2) and H2. They found evidence for the formation of organic 
oxidized sulfur (OOS) compounds such as methyl sulfonic acid. Taken together, these observations suggest that 
organic oxidized sulfur (OOS) and organic reduced sulfur (ORS) may be important sulfur reservoirs in a range of 
atmospheres varying from more reducing to more oxidizing.

Hydrogen sulfide (H2S) has received little attention in laboratory studies on Archean organic haze. However, 
the role of H2S in haze chemistry has been investigated in laboratory experiments of carbon dioxide (CO2) and 
H2-rich exoplanetary atmospheres without CH4 (He et al., 2020; Vuitton et al., 2021). Similar to SO2, H2S photo-
dissociation is capable of producing S-MIF, albeit of different magnitude and pattern (Chakraborty et al., 2013; 
Farquhar, Savarino, et al., 2000). Although SO2 is presumed to be the dominant atmospheric sulfur gas, SO2 and 
H2S are co-emitted to the atmosphere with relative amounts dependent on the temperature, pressure, and redox 
conditions of hydrothermal or magmatic sources (Aiuppa et  al.,  2006). At fumarole sources and in volcanic 
plumes, H2S can dominate over SO2, with modern measurements of volcanic SO2:H2S ratios ranging from ∼0.4 
to 20 (Aiuppa et al., 2005). Atmospheric chemistry models suggest that H2S can accumulate in reducing atmos-
pheres with low levels of oxygen, such as the Archean atmosphere (Kasting et al., 1989; Kump et al., 2005). The 
Archean Eon likely experienced high volcanic activity and biological sulfate reduction in a reduced atmosphere, 
thus emission and accumulation of H2S in the atmosphere were likely (Archer & Vance, 2006; Holland, 2002; Hu 
et al., 2013; Kump & Barley, 2007; Shen & Buick, 2004; Shen et al., 2001).

The goal of our study is to improve the understanding of the role of H2S in the Archean atmosphere and, specif-
ically, its influence on organic haze. We conducted laboratory experiments exploring how the addition of trace 
H2S in CO2/CH4/N2 gas mixtures affects photochemical haze formation as a function of the CO2 concentration 
in the mixture. The composition and mass of aerosol was monitored in real time using quadrupole aerosol mass 
spectrometry (Q-AMS). Our general conclusions are focused on trends in aerosol mass loading and bulk compo-
sition rather than on specific values of a given experiment. We find that trace H2S enhances organic aerosol 
production, even at high CO2 mixing ratios, and forms both organic and inorganic sulfur aerosol.

2.  Materials and Methods
2.1.  Haze Aerosol Generation

Experiments were conducted at ambient temperature and pressure using a far ultraviolet (UV) deuterium lamp 
as an energy source. The flow-system and haze analog generation by UV photolysis of gas mixtures has been 
previously described in detail (Berry et al., 2019a; Hörst & Tolbert, 2013; Reed et al., 2020; Trainer et al., 2012) 
and is described in Text S1 of Supporting Information S1. Gas mixtures were made in a N2 background gas 
(Airgas, ultra-high purity, 99.999%) with mixing ratios of 0.1% CH4 (Airgas, 99.99%), CO2 of 0.1, 0.2, 0.5, 
1%, or 2% (Airgas, 99.999%), and 0 or 5 ppmv H2S (Airgas, 1,000 ppmv H2S in N2). Rationale for these mixing 
ratios is given in Text S1 of Supporting Information S1 and is based on previous experiments and predicted 
values in the Archean atmosphere (Arney et al., 2018; Berry et al., 2019a, 2019b; Domagal-Goldman et al., 2008; 
Holland, 2002; Izon et al., 2015, 2017; Reed et al., 2020; Trainer et al., 2006; Zerkle et al., 2012). We confirmed 
the stability of H2S against conversion to H2SO4 due to any residual H2O in the system in additional experiments 
(Figure S1 in Supporting Information S1). All measurements reported were made after a 10-min period of the 
lamp being on to ensure steady state conditions of the products.

A quadrupole aerosol mass spectrometer (Q-AMS) directly samples the flow of aerosol products for real-time, 
quantitative measurements of total aerosol mass loading and chemical composition (Allan et al., 2002, 2003; 
Jayne et al., 2000; Jimenez et al., 2003). The Q-AMS has been described in detail (Allan et al., 2002). Chemi-
cally resolved aerosol composition is determined using data analysis software and a standard analysis technique 
developed for the AMS (Allan et al., 2002, 2004) described in Text S2 of Supporting Information S1. While the 
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unit mass resolution Q-AMS cannot unequivocally attribute an m/z to a given chemical species, the assignments 
of overall classifications are based on relationships between several ions using a fragmentation table, discussed 
further in Text S2 of Supporting Information S1. A discussion of detection limits and uncertainty is in Text S3 
of Supporting Information S1.

2.2.  Estimation of Organic Oxidized Sulfur (OOS) Aerosol

In the Q-AMS, OOS compounds fragment to produce mainly “organic” ions (CxHyOz +) and “sulfate” ions 
(HxSOy +) as a result of decomposition during electron ionization and/or the vaporization process (Chen 
et al., 2019; Farmer et al., 2010; Schueneman et al., 2021). However, the relative intensity and identity of certain 
“sulfate” ions produced by OOS compounds differ from those produced from inorganic sulfates such as sulfate 
salts and H2SO4. These “sulfate” ions include SO + (m/z 48), SO2 + (m/z 64), SO3 + (m/z 80), HSO3 + (m/z 81), and 
H2SO4 + (m/z 98). Organosulfates do not produce the ions HSO3 + (m/z 81) and H2SO4 + (m/z 98), and organosul-
fonates, such as methyl sulfonic acid, do not produce the H2SO4 + ion (m/z 98) (Chen et al., 2019; Schueneman 
et al., 2021). Thus, the H2SO4 + ion (m/z 98) is unique to inorganic sulfate. These differences in fragmentation 
have been leveraged to quantify the total amount of OOS in aerosol (Chen et al., 2019; Schueneman et al., 2021). 
We define the variable fH2SO4 (Equation 1) as the ratio of the signal from the H2SO4 + ion (m/z 98) to the sum of 
the ion signals from H2SO4 +, HSO3 +, SO3 +, SO2 +, and SO + (Chen et al., 2019).

fH2SO4 =
𝑚𝑚98sulfate

𝑚𝑚98sulfate + 𝑚𝑚81sulfate + 𝑚𝑚80sulfate + 𝑚𝑚64sulfate + 𝑚𝑚48sulfate

� (1)

where m98sulfate, m81sulfate, m80sulfate, m64sulfate, and m48sulfate are the signals at m/z 98 (H2SO4 +), 81 (HSO3 +), 80 
(SO3 +), 64 (SO2 +), and 48 (SO +) attributed to sulfate. This attribution of the signals to sulfate ions is described 
further in Text S2 of Supporting Information S1. We normalize the fH2SO4 for a given sample to fH2SO4 for a 
pure ammonium sulfate aerosol (fH2SO4(pure AS)) to define the variable nfH2SO4 (Equation 2)

nfH2SO4 =
fH2SO4

fH2SO4(pure AS)
� (2)

The mass of sulfate attributed to OOS is estimated by Equation 3

OOS = [SO4] − nfH2SO4 × [SO4]� (3)

where [SO4] is the total mass loading of sulfate in the AMS spectrum (Schueneman et al., 2021). Note that the 
mass of OOS by this calculation is for the sulfate group only and does not include the mass of the organic back-
bone. In more acidic sulfur aerosol such as pure H2SO4 aerosol, (pH < 0), fH2SO4 is greater than the fH2SO4 of 
pure AS (Schueneman et al., 2021). Thus, finding an nfH2SO4 > 1 in the experiments conducted here would be 
an indicator of H2SO4 aerosol (Text S4 in Supporting Information S1).

3.  Results and Discussion
3.1.  Aerosol Mass Loading and Chemical Composition

Figure 1 shows an example of analyzed Q-AMS spectra from experiments with 0.5% CO2 and 0.1% CH4 with 0 
(Figure 1a) or 5 ppmv (Figure 1b) H2S. Aerosol mass loading increased at nearly every m/z for precursor mixtures 
with 5 ppmv H2S compared to the same mixtures (CO2 and CH4 mixing ratios) in the absence of H2S. Sulfate aero-
sol contributed to the increase in total aerosol mass (Figures 1b and 2b) and increased as a function of the CO2 
mixing ratio/O:C ratio (Figure 2b). The measurements provided no evidence of S8 aerosol formation. Because 
the expected S8 ions m/z 96, 128, 160, and 192 were absent under all conditions (example spectrum with an 
extended m/z range is shown in Figure S2 of Supporting Information S1), we attribute m/z 64 to SO2 + rather than 
to S2 + (Dewitt et al., 2010). Further, the ratio of ion intensities of m/z 48 to m/z 64 are ∼1.1 under all conditions, 
consistent with the expectations of sulfate aerosol spectra (Dewitt et al., 2010). Additionally, we observed no 
evidence of pure H2SO4 and/or acidic sulfate aerosol as nfH2SO4 was never greater than one (Text S4 and Figure 
S3 in Supporting Information S1). An increase in ammonium coincident with the increase in sulfate (Figure 2b) 
implies the formation of inorganic salts, such as ammonium sulfate. Therefore, we attribute the sulfate fragments 
as originating from sulfate salts or OOS rather than S8 or H2SO4.
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The inclusion of H2S increases the organic aerosol mass (Figures 1b and 2b) and alters the trend in organic aerosol 
mass as a function of O:C of the precursor mixture. The organic aerosol mass formed from precursor mixtures 
without H2S decreases once O:C exceeds 4:3 (Figure 2a). This decrease in aerosol mass is consistent with past 
models and experiments using similar precursor mixtures showing organic aerosol decreases at high O:C ratios, 
typically >∼1:1 (Arney et al., 2016; Trainer et al., 2006). However, in the experiments with H2S, the organic 
aerosol mass exceeds the total aerosol mass of the control experiments and remains constant for O:C ratios of 
1:1–40:21 (Figures 2a and 2b). The organic aerosol also increased with the addition of CO2 compared to the H2S/
CH4 experiment without CO2 (Figure 2b) from our previous work, Reed et al. (2020).

Figure 1.  (a) Mass spectra of aerosol produced from 0.5% CO2 and 0.1% CH4 in N2 (a) without H2S and (b) with 5 ppmv H2S. Each m/z fragment is assigned to either 
organic, sulfate, ammonium, nitrate, or unassigned aerosol fragments. Note that the mass loading range for (b) is larger than (a) by a factor of 4. Ion intensities for m/z 
75 and higher are multiplied by a factor of 15 for clarity. Colorblind-friendly figure as Figure S4 in Supporting Information S1.

Figure 2.  Aerosol mass loadings from precursor mixtures with (a) 0 ppmv H2S and (b) 5 ppmv H2S as a function of O:C ratio/% CO2 of the precursor mixtures. Colors 
indicate aerosol chemical speciation. Data shown for 0:1 O:C ratio/0% CO2 are from Reed et al. (2020). Two experiments each were conducted for 0.2% and 0.5% CO2 
with 0.1% CH4 and 5 ppmv H2S to check for reproducibility; the data shown are averages. Colorblind-friendly figure as Figure S5 in Supporting Information S1.
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3.2.  Attribution of Organosulfur Aerosol

The amount of the sulfate signal originating from OOS fragments was esti-
mated for each H2S experiment as discussed in Section 2.2. OOS aerosol mass 
exhibited a maximum at 0.5% CO2 and a minimum at 0.1% CO2 (Figure 3). A 
change in oxidative capacity of the gas mixture potentially explains why OOS 
mass reaches a maximum and inorganic sulfate appears at 0.5% CO2; the 
O:H ratio of the mixture is greater than 1 (∼5:2) at 0.5% CO2 and above. The 
conclusion that OOS is significant still holds even for a lower limit estimate 
of OOS (Text S5 and Figure S6 in Supporting Information S1).

Organic aerosol formed from the precursor mixtures with H2S contain ions 
consistent with fragments of ORS compounds. These include ions (m/z 
32–35, 45–48, and 58–62) that were identified in our past work of H2S/CH4 
haze chemistry in the absence of CO2 (Reed et al., 2020). These ORS masses 
are enhanced in signal compared to experiments without H2S (Figure S8 in 
Supporting Information S1). This enhancement pattern closely matches the 
results of Reed et al. (2020) and is attributed to ORS formation (Text S6 in 
Supporting Information  S1). Here we select m/z 45 as an ORS proxy ion 
because it includes the simplest ORS ion fragment, HCS +, and sulfate does 
not produce an m/z 45 ion. In H2S-free experiments, the ion is attributed to 
oxygenated organic fragments, such as HCO2 + or H5C2O +. We define the 
variable f45 as the fraction of the organic mass signal from m/z 45. Figure 4 
shows f45 at each O:C ratio/CO2 mixing ratio. The f45 is higher in experi-
ments that included 5 ppmv H2S than in experiments without H2S. We inter-
pret this enhancement of f45 as evidence for the formation of HCS + as it is 
unlikely that the addition of H2S would produce an increase in the fractional 

contribution of oxygenated organic compounds to organic aerosol mass. The f45 exhibits a clear decrease as 
a function of O:C ratio, suggesting more of the sulfur is converted to OOS and inorganic sulfate, rather than 
ORS, as the initial gas mixture becomes more oxidizing. Possible mechanisms for ORS and OOS formation 
are discussed in Text S7 of Supporting Information S1 and are based on Reed et al. (2020) and chemistry in the 
modern atmosphere (e.g., Liggio & Li, 2006; Tolocka & Turpin, 2012).

3.3.  Significance for Archean Atmosphere

General thought is that little to no organic haze will form in CO2-rich atmos-
pheres, such as Archean Earth (Arney et al., 2016; Trainer et al., 2006). This 
decrease in haze production is thought to, at least in part, result from the 
production of O radicals from CO2 photolysis. At higher O:C ratios (>1:1), 
O radicals terminate hydrocarbon chain growth chemistry, making smaller 
molecules with presumably higher vapor pressures that are unable to parti-
tion into the aerosol particles, decreasing the amount of organic aerosol 
(Trainer et al., 2006). The exact effects of this chemistry are dependent on 
the precursor gas mixture and metrics such as the H:O ratio. For example, He 
et al. (2018) showed that addition of H2O led to an increase in organic aero-
sol mass (He et al., 2018). The H2S-free experiments in this study support 
this general idea. In contrast, our results show that the addition of trace H2S 
can enhance production of organic aerosol at O:C ratios >1. Moreover, the 
amount of organic aerosol formed exceeds the total aerosol produced in the 
H2S-free experiments and remains constant as the O:C ratio increases, up to 
a ratio of 40:21. Figure 5 illustrates these overarching findings and compares 
our results to previous understandings of CO2/CH4 haze chemistry.

Our results have implications for the sulfur chemistry of the Archean 
atmosphere. It has generally been assumed that the dominant sulfur reser-
voirs in the Archean atmosphere were either S8 and H2SO4 aerosol (Kasting 

Figure 3.  Total sulfate aerosol signal as a function of O:C ratio/% CO2 
showing the inorganic sulfate (salmon) and organic oxidized sulfur (OOS) 
(maroon) aerosol contributions. Two experiments each were conducted 
for 0.2% and 0.5% CO2 with 0.1% CH4 and 5 ppmv H2S to check for 
reproducibility; the data shown are averages. Colorblind-friendly figure as 
Figure S7 in Supporting Information S1.

Figure 4.  f45 as function of O:C ratio/% CO2 in experiments with 5 ppmv H2S 
(pink) and without H2S (green). The data shown at 0:1 O:C ratio/0% CO2 are 
from Reed et al., 2020.
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et  al.,  1989; Pavlov & Kasting, 2002). However, we found no evidence in 
our experiments for the formation of either S8 or H2SO4 aerosol although 
we did observe inorganic sulfate, likely present as a salt evidenced by the 
increased NH4 mass loading (Figure 2b). Our study shows that OOS accounts 
for a significant portion (∼13%–100%) of the sulfate aerosol formed. OOS 
aerosol was observed at all CO2 mixing ratios studied with trace H2S pres-
ent in the precursor mixture. Our new results highlight the formation of 
OOS, and possibly ORS, as a potential control on the atmospheric, biologi-
cal, and sedimentary expression of S-SMIF (Halevy, 2013; Lie et al., 1996; 
Zerkle et al., 2012). In addition to potentially revising the current paradigm 
surrounding S-MIF Archean atmospheric sulfur chemistry, an atmospheric 
sulfur cycle that is more diverse than just S8 and pure H2SO4 aerosol may 
have implications for the early evolution of life of Earth, given the impor-
tance of organosulfur compounds in the evolution of early metabolic path-
ways (Lie et al., 1996; Wagner et al., 1998) and, perhaps, at the origin of life 
(De Duve,  2011). Recent experiments using chemical and physical condi-
tions different from those presented here  also report organosulfur formation 
(He et al., 2020; Vuitton et al., 2021). Further, the formation of OOS and 
the lack of H2SO4 and S8 formation would likely depend on the H2S/SO2 

outgassing ratio in planetary atmospheres. However, the SO2 experiments of Dewitt et al. (2010) also reported 
organosulfur formation. Taken together, our results and those of past studies suggest this sulfur chemistry appears 
ubiquitous under a variety of atmospheric conditions.

Our results also impact the understanding of CO2/CH4 haze chemistry in exoplanetary atmospheres. Arney 
et al. (2018) proposed that an organic haze may be a potential biosignature if a significant amount of haze was 
present at high CO2 mixing ratios, as this would require an additional carbon source from life (Arney et al., 2018). 
However, we have shown that trace H2S enhances organic haze formation at high CO2 mixing ratios in the 
absence of additional carbon sources, suggesting that an organic haze production may exhibit a large sensitivity 
to both biotic and abiotic trace gases.

4.  Conclusions
Our results suggest that trace H2S in Archean-like organic haze analog experiments facilitates a coupling between 
the carbon and sulfur haze production pathways. This coupling increases organic aerosol mass and forms orga-
nosulfur species (OOS and ORS) even at high O:C ratios. In contrast, S8 and H2SO4 aerosol products were not 
observed under any of our experimental conditions, though inorganic sulfate aerosol was observed in the form of 
salts. Our work also demonstrates a potential abiotic production pathway for organosulfur compounds. Organo-
sulfur compounds are an essential component of life, and this pathway has implications for prebiotic chemistry 
and nutrient production for early life. Facile production of organosulfur aerosol in the Archean atmosphere, 
as demonstrated here experimentally, will influence interpretations and understanding of the S-MIF record in 
Archean sedimentary rocks.

Data Availability Statement
All data and the fragmentation table are archived and made available through the CU Scholar data repository 
provided by the University Libraries at the University of Colorado, Boulder. https://doi.org/10.25810/bnqe-wt68.
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